
Python: function averager
cdutil.averager = averager(V, axis=None, weights=None, action='average', returned=0, weight=None,
combinewts=None)

 Documentation for averager():
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The averager() function provides a convenient way of averaging your data giving
you control over the order of operations (i.e which dimensions are averaged
over first) and also the weighting for the different axes. You can pass your
own array of weights for each dimension or use the default (grid) weights or
specify equal weighting.

Author: Krishna AchutaRao : achutarao1@llnl.gov

Returns:
−−−−−−−
 The average over the specified dimensions.
Usage:
−−−−−−
from cdutil import averager
averager(V, axis='axisoptions', weights=weightoptions, action='average',
 returned='0')

Where V is an array. It can be an array of Numeric, MA or MV type. In each case
the function returns an array (except when it results in a scalar) of the same
type as V. See examples for more details.

Optional Arguments:
−−−−−−−−−−−−−−−−−−−
axis=axisoptions
 Restrictions: axisoptions has to be a string
 Default : first dimension in the data you pass to the function.

 You can pass axis='tyx', or '123', or 'x (plev)' etc. the same way as
 in order= options for variable operations EXCEPT that
 '...'(i.e Ellipses) are not allowed. In the case that V is a Numeric or
 MA array, axis names have no meaning and only axis indexes are valid.

weights=weightoptions
 Default :
 'weighted' for Transient Variables (MVs)
 'unweighted' for MA or Numeric arrays.

 Note that depending on the array being operated on by averager, the
 default weights change!

 Weight options are one of 'weighted', 'unweighted', an array of weights for
 each dimension or a MaskedVariable of the same shape as the data x.

 − 'weighted' means use the grid information to generate weights for

1/3

 that dimension.

 − 'unweighted' means use equal weights for all the grid points in that axis.

 − Also an array of weights (of the same shape as the dimension being
 averaged over or same shape as V) can be passed.

 Additional Notes on 'weighted' option: The weights are generated
 using the bounds for the specified axis. For latitude and Longitude,
 the weights are calculated using the area (see the cdms manual
 grid.getWeights() for more details) whereas for the other axes
 weights are the difference between the bounds (when the bounds are
 available). If the bounds are stored in the file being read in, then
 those values are used. Otherwise, bounds are generated as long as
 cdms.setAutoBounds('on') is set. If cdms.setAutoBounds() is set to
 'off', then an Error is raised.

action='average' or 'sum'
 Default : 'average'

 You can either return the weighted average or the weighted sum of the
 data by specifying the keyword argument action=

returned = 0 or 1
 Default: 0

 − 0 implies sum of weights are not returned after averaging operation.
 − 1 implies the sum of weights after the average operation is returned.

combinewts = None, 0 or 1
 Default: None − same as 0
 − 0 implies weights passed for individual axes are not combined into one
 weight array for the full variable V before performing operation.
 − 1 implies weights passed for individual axes are combined into one
 weight array for the full variable before performing average or sum
 operations. One−dimensional weight arrays or key words of 'weighted' or
 'unweighted' must be passed for the axes over which the operation is
 to be performed. Additionally, weights for axes that are not being
 averaged or summed may also bepassed in the order in which they appear.
 If the weights for the other axes are not passed, they are assumed to
 be equally weighted.

Examples:
−−−−−−−−−
 >>> f = cdms.open('data_file_name')
 >>> averager(f('variable_name'), axis='1')
 # extracts the variable 'variable_name' from f and averages over the
 # dimension whose position is 1. Since no other options are specified,
 # defaults kick in i.e weight='weighted' and returned=0

 >>> averager(V, axis='xy', weights=['weighted','unweighted'])
 or

2/3

 >>> averager(V, axis='t', weights='unweighted')
 or
 >>> averager(V, axis='x')
 # Default weights option of 'weighted' is implemented
 or
 >>> averager(V, axis='x', weights=mywts)
 # where mywts is an array of shape (len(xaxis)) or shape(V)
 or
 >>> averager(V, axis='(lon)y', weights=[myxwts, myywts])
 # where myxwts is of shape len(xaxis) and myywts is of shape len(yaxis)
 or
 >>> averager(V, axis='xy', weights=V_wts)
 # where V_wts is a Masked Variable of shape V
 or
 >>> averager(V, axis='x', weights='unweighted', action='sum')
 # will return the equally weighted sum over the x dimension
 or
 >>> ywt = area_weights(y)
 >>> fractional_area = averager(ywt, axis='xy',
 weights=['unweighted', 'unweighted'], action='sum')
 # is a good way to compute the area fraction that the
 # data y that is non−missing

Note:
−−−−−
 When averaging data with missing values, extra care needs to be taken.
 It is recommended that you use the default weights='weighted' option.
 This uses cdutil.area_weights(V) to get the correct weights to
 pass to the averager.
 >>> averager(V, axis='xy', weights='weighted')

 The above is equivalent to:
 >>> V_wts = cdutil.area_weights(V)
 >>> result = averager(V, axis='xy', weights=V_wts)
 or
 >>> result = averager(V, axis='xy', weights=cdutil.area_weights(V))

 However, the area_weights function requires that the axis bounds are
 stored or can be calculated (see documentation of area_weights for more
 details). In the case that such weights are not stored with the axis
 specifications (or the user desires to specify weights from another
 source), the use of combinewts option can produce the same results.
 In short, the following two are equivalent:
 >>> xavg_1 = averager(X, axis = 'xy', weights = area_weights(X))
 >>> xavg_2 = averager(X, axis = 'xy', weights = ['weighted', 'weighted', 'weighted'], combinewts=1)

 Where X is a function of x, y and a third dimension such as time or level.

 In general, the above can be substituted with arrays of weights where
 the 'weighted' keyword appears.

3/3

	PCMDI Software Portal - Python: function averager

